Heliyon (Aug 2024)
Investigating the effect of solvent on anti-antioxidant properties of Sesamum indicum seeds
Abstract
Dietary phytochemicals are important bioactive compounds that can scavenge reactive oxygen species. These essential compounds may have antioxidant properties which are known to play a significant role in the treatment and prevention of many chronic diseases. Sesame, an oil-bearing seed, is a well-known promising source of food with both nutritional and therapeutic benefits. As a result, the study aimed to evaluate the antioxidant properties of different solvent extracts of Sesame seeds and to analyse the bioactive compounds present. The seeds were obtained from the local farmers and prepared for analysis. The bioactive compounds present in the seeds were extracted using hexane, ethyl acetate, ethanol, and water. The total phenolic content (TPC), the condensed tannin content (CTC), the total antioxidant capacity (TAC), and the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay were also determined using standard methods. Two chemometric methods, hierarchical cluster analysis (HCA) and Pearson correlation, were employed to evaluate the interdependence of the various parameters and the antioxidant activity. Anti-nutrients such as saponins, alkaloids, phytates, and oxalates were also analysed from the powdered seeds. The study results revealed the presence of anti-nutrients such as phytate (7.691 ± 0.8576 mg/g), oxalate (1.501 ± 0.1375 mg/g), saponins (21.33 ± 4.619 mg/g) and alkaloids (317.33 ± 30.29 mg/g). The study also revealed that the aqueous extract exhibited the highest TPC (17.12 ± 0.041 mg GAE/g of dried extract, p < 0.05) and CTC (64.27 ± 4.711 mg CE/g of dried extract, p < 0.05). Ethanol and hexane had a similar total phenolic content (14.83 ± 0.123 and 14.66 ± 1.474 mg GAE/g of dried extract, respectively, p < 0.05Ethyl acetate had the lowest TPC content. Ethanol extracts had the highest antioxidant activity with a TAC value of 232.6 ± 6.267 mg/g AAE and a DPPH scavenging activity of IC50 of 52.81 ± 2.30 μg/mL. A good correlation (p < 0.05) was established between the extracts' TPC, CTC, TAC, and DPPH radical scavenging activity. Chemometric analysis from the study showed no significant connection between the radical scavenging activity of TPC and DPPH. From the results obtained, it can be concluded that the bioactive compounds present in the sesame seed and their subsequent antioxidant properties are dependent on the nature of the solvent used for extraction.