International Journal of Mathematics and Mathematical Sciences (Jan 2009)

Newton-Krylov Type Algorithm for Solving Nonlinear Least Squares Problems

  • Mohammedi R. Abdel-Aziz,
  • Mahmoud M. El-Alem

DOI
https://doi.org/10.1155/2009/435851
Journal volume & issue
Vol. 2009

Abstract

Read online

The minimization of a quadratic function within an ellipsoidal trust region is an important subproblem for many nonlinear programming algorithms. When the number of variables is large, one of the most widely used strategies is to project the original problem into a small dimensional subspace. In this paper, we introduce an algorithm for solving nonlinear least squares problems. This algorithm is based on constructing a basis for the Krylov subspace in conjunction with a model trust region technique to choose the step. The computational step on the small dimensional subspace lies inside the trust region. The Krylov subspace is terminated such that the termination condition allows the gradient to be decreased on it. A convergence theory of this algorithm is presented. It is shown that this algorithm is globally convergent.