Physiologia (Oct 2023)
Influence of No-Till System with or without Cover Crops on Stomata Sensitivity of Glyphosate-Tolerant Soybeans to Vapor Pressure Deficit
Abstract
Soybeans are vulnerable to drought and temperature increases potentially induced by climate change. Hydraulic dysfunction and stomatal closure to avoid excessive transpiration are the main problems caused by drought. The vulnerability of soybeans to drought will depend on the intensity and duration of water stress. The purpose of this study was to determine if the use of cover crops (CCs) can influence the gas exchange potential of glyphosate-tolerant soybeans when the vapor pressure deficit (Vpd) increases. This two-year study was conducted in an open experimental field comprising direct seeding plots with or without CCs. Stomatal conductance (Gs) was measured five times on the same identified leaves following glyphosate-based herbicide application. These leaves were then collected in order to observe the stomata and foliar traits with a scanning electron microscope. The Vpd was calculated concomitantly to Gs measurements at the leaf surface. The results suggest that the use of CCs promotes phenotypic change in soybean leaves (more elaborate venation and a higher abaxial stomatal density), which in turn may enhance their tolerance to drier conditions. In 2019, Gs could be up to 29% higher in plots with CCs compared to those without CCs with similar Vpd values. This study shows that the benefits of using CCs can be observed via the morphological development strategies of the crop plants and their higher tolerance to drought.
Keywords