Polymers (Jan 2023)

Synergistic Flame Retardant Properties of Polyoxymethylene with Surface Modified Intumescent Flame Retardant and Calcium Carbonate

  • Zheng Yang,
  • Xueting Chen,
  • Shike Lu,
  • Zhenhua Wang,
  • Jiantong Li,
  • Baoying Liu,
  • Xiaomin Fang,
  • Tao Ding,
  • Yuanqing Xu

DOI
https://doi.org/10.3390/polym15030537
Journal volume & issue
Vol. 15, no. 3
p. 537

Abstract

Read online

Ammonium polyphosphate (APP) was successfully modified by a titanate coupling agent which was compounded with benzoxazine (BOZ) and melamine (ME) to become a new type of intumescent flame retardant (Ti-IFR). Ti-IFR and CaCO3 as synergists were utilized to modify polyoxymethylene (POM), and the flame-retardant properties and mechanism of the composites were analyzed by vertical combustion (UL-94), limiting oxygen index (LOI), TG-IR, and cone calorimeter (Cone), etc. The results show that Ti-IFR can enhance the gas phase flame retardant effect, while CaCO3 further strengthens the barrier effect in the condensed phase. When they were used together, they can exert their performance, respectively, at the same time showing excellent synergistic effect. The FR-POM composite with 29% Ti-IFR and 1% CaCO3 can pass the UL-94 V0 level. The LOI reaches 58.2%, the average heat release (Av HRR) is reduced by 81.1% and the total heat release (THR) is decreased by 35.3%.

Keywords