Sensors (Jul 2024)

Atmospheric Turbulence Phase Reconstruction via Deep Learning Wavefront Sensing

  • Yutao Liu,
  • Mingwei Zheng,
  • Xingqi Wang

DOI
https://doi.org/10.3390/s24144604
Journal volume & issue
Vol. 24, no. 14
p. 4604

Abstract

Read online

The fast and accurate reconstruction of the turbulence phase is crucial for compensating atmospheric disturbances in free-space coherent optical communication. Traditional methods suffer from slow convergence and inadequate phase reconstruction accuracy. This paper introduces a deep learning-based approach for atmospheric turbulence phase reconstruction, utilizing light intensity images affected by turbulence as the basis for feature extraction. The method employs extensive light intensity-phase samples across varying turbulence intensities for training, enabling phase reconstruction from light intensity images. The trained U-Net model reconstructs phases for strong, medium, and weak turbulence with an average processing time of 0.14 s. Simulation outcomes indicate an average loss function value of 0.00027 post-convergence, with a mean squared error of 0.0003 for individual turbulence reconstructions. Experimental validation yields a mean square error of 0.0007 for single turbulence reconstruction. The proposed method demonstrates rapid convergence, robust performance, and strong generalization, offering a novel solution for atmospheric disturbance correction in free-space coherent optical communication.

Keywords