Current Research in Physiology (Jan 2021)
Measures of repolarization variability predict ventricular arrhythmogenesis in heptanol-treated Langendorff-perfused mouse hearts
Abstract
Background: Time-domain and non-linear methods can be used to quantify beat-to-beat repolarization variability but whether measures of repolarization variability can predict ventricular arrhythmogenesis in mice have never been explored. Methods: Left ventricular monophasic action potentials (MAPs) were recorded during constant right ventricular 8 Hz pacing in Langendorff-perfused mouse hearts, in the presence or absence of the gap junction and sodium channel inhibitor heptanol (0.1, 0.5, 1 or 2 mM). Results: Under control conditions, mean action potential duration (APD) was 39.4 ± 8.1 ms. Standard deviation (SD) of APDs was 0.3 ± 0.2 ms, coefficient of variation was 0.9 ± 0.8% and the root mean square (RMS) of successive differences in APDs was 0.15 ± 0.14 ms. Poincaré plots of APDn+1 against APDn revealed ellipsoid morphologies with a SD along the line-of-identity (SD2) to SD perpendicular to the line-of-identity (SD1) ratio of 4.6 ± 2.1. Approximate and sample entropy were 0.61 ± 0.12 and 0.76 ± 0.26, respectively. Detrended fluctuation analysis revealed short- and long-term fluctuation slopes of 1.49 ± 0.27 and 0.81 ± 0.36, respectively. Heptanol at 2 mM induced ventricular tachycardia in five out of six hearts. None of the above parameters were altered by heptanol during which reproducible electrical activity was observed (KW-ANOVA, P > 0.05). Contrastingly, SD2/SD1 decreased to 2.03 ± 0.41, approximate and sample entropy increased to 0.82 ± 0.12 and 1.45 ± 0.34, and short-term fluctuation slope decreased to 0.82 ± 0.19 during the 20-s period preceding spontaneous ventricular tachy-arrhythmias (n = 6, KW-ANOVA, P < 0.05). Conclusion: Measures of repolarization variability, such as SD2/SD1, entropy, and fluctuation slope are altered preceding the occurrence of ventricular arrhythmogenesis in mouse hearts. Changes in these variables may allow detection of impending arrhythmias for early intervention.