Frontiers in Pediatrics (Aug 2023)
AI-based diagnosis in mandibulofacial dysostosis with microcephaly using external ear shapes
- Quentin Hennocq,
- Quentin Hennocq,
- Quentin Hennocq,
- Thomas Bongibault,
- Thomas Bongibault,
- Sandrine Marlin,
- Sandrine Marlin,
- Jeanne Amiel,
- Jeanne Amiel,
- Tania Attie-Bitach,
- Tania Attie-Bitach,
- Geneviève Baujat,
- Geneviève Baujat,
- Lucile Boutaud,
- Georges Carpentier,
- Pierre Corre,
- Pierre Corre,
- Françoise Denoyelle,
- François Djate Delbrah,
- Maxime Douillet,
- Eva Galliani,
- Wuttichart Kamolvisit,
- Wuttichart Kamolvisit,
- Stanislas Lyonnet,
- Stanislas Lyonnet,
- Dan Milea,
- Véronique Pingault,
- Véronique Pingault,
- Thantrira Porntaveetus,
- Thantrira Porntaveetus,
- Sandrine Touzet-Roumazeille,
- Marjolaine Willems,
- Arnaud Picard,
- Marlène Rio,
- Marlène Rio,
- Nicolas Garcelon,
- Roman H. Khonsari,
- Roman H. Khonsari,
- Roman H. Khonsari
Affiliations
- Quentin Hennocq
- Imagine Institute, INSERM UMR1163, Paris, France
- Quentin Hennocq
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris Cité, Paris, France
- Quentin Hennocq
- Laboratoire ‘Forme et Croissance du Crâne’, Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Thomas Bongibault
- Imagine Institute, INSERM UMR1163, Paris, France
- Thomas Bongibault
- Laboratoire ‘Forme et Croissance du Crâne’, Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Sandrine Marlin
- Imagine Institute, INSERM UMR1163, Paris, France
- Sandrine Marlin
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
- Jeanne Amiel
- Imagine Institute, INSERM UMR1163, Paris, France
- Jeanne Amiel
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
- Tania Attie-Bitach
- Imagine Institute, INSERM UMR1163, Paris, France
- Tania Attie-Bitach
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
- Geneviève Baujat
- Imagine Institute, INSERM UMR1163, Paris, France
- Geneviève Baujat
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
- Lucile Boutaud
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
- Georges Carpentier
- CHU Lille, Inserm, Service de Chirurgie Maxillo-Faciale et Stomatologie, U1008-Controlled Drug Delivery Systems and Biomaterial, Université de Lille, Lille, France
- Pierre Corre
- Department of Oral and Maxillofacial Surgery, INSERM U1229—Regenerative Medicine and Skeleton RMeS, Nantes, France
- Pierre Corre
- Department of Oral and Maxillofacial Surgery, Nantes University, CHU Nantes, Nantes, France
- Françoise Denoyelle
- Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
- François Djate Delbrah
- Imagine Institute, INSERM UMR1163, Paris, France
- Maxime Douillet
- Imagine Institute, INSERM UMR1163, Paris, France
- Eva Galliani
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris Cité, Paris, France
- Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Wuttichart Kamolvisit
- 0Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Stanislas Lyonnet
- Imagine Institute, INSERM UMR1163, Paris, France
- Stanislas Lyonnet
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
- Dan Milea
- 1Duke-NUS Medical School Singapore, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Véronique Pingault
- Imagine Institute, INSERM UMR1163, Paris, France
- Véronique Pingault
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
- Thantrira Porntaveetus
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Thantrira Porntaveetus
- 0Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Sandrine Touzet-Roumazeille
- CHU Lille, Inserm, Service de Chirurgie Maxillo-Faciale et Stomatologie, U1008-Controlled Drug Delivery Systems and Biomaterial, Université de Lille, Lille, France
- Marjolaine Willems
- 2Département de Génétique Clinique, CHRU de Montpellier, Hôpital Arnaud de Villeneuve, Institute for Neurosciences of Montpellier, INSERM, Univ Montpellier, Montpellier, France
- Arnaud Picard
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris Cité, Paris, France
- Marlène Rio
- Imagine Institute, INSERM UMR1163, Paris, France
- Marlène Rio
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Faculté de Médecine, Université de Paris Cité, Paris, France
- Nicolas Garcelon
- Imagine Institute, INSERM UMR1163, Paris, France
- Roman H. Khonsari
- Imagine Institute, INSERM UMR1163, Paris, France
- Roman H. Khonsari
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Necker—Enfants Malades, Assistance Publique—Hôpitaux de Paris, Centre de Référence des Malformations Rares de la Face et de la Cavité Buccale MAFACE, Filière Maladies Rares TeteCou, Faculté de Médecine, Université de Paris Cité, Paris, France
- Roman H. Khonsari
- Laboratoire ‘Forme et Croissance du Crâne’, Faculté de Médecine, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- DOI
- https://doi.org/10.3389/fped.2023.1171277
- Journal volume & issue
-
Vol. 11
Abstract
IntroductionMandibulo-Facial Dysostosis with Microcephaly (MFDM) is a rare disease with a broad spectrum of symptoms, characterized by zygomatic and mandibular hypoplasia, microcephaly, and ear abnormalities. Here, we aimed at describing the external ear phenotype of MFDM patients, and train an Artificial Intelligence (AI)-based model to differentiate MFDM ears from non-syndromic control ears (binary classification), and from ears of the main differential diagnoses of this condition (multi-class classification): Treacher Collins (TC), Nager (NAFD) and CHARGE syndromes.MethodsThe training set contained 1,592 ear photographs, corresponding to 550 patients. We extracted 48 patients completely independent of the training set, with only one photograph per ear per patient. After a CNN-(Convolutional Neural Network) based ear detection, the images were automatically landmarked. Generalized Procrustes Analysis was then performed, along with a dimension reduction using PCA (Principal Component Analysis). The principal components were used as inputs in an eXtreme Gradient Boosting (XGBoost) model, optimized using a 5-fold cross-validation. Finally, the model was tested on an independent validation set.ResultsWe trained the model on 1,592 ear photographs, corresponding to 1,296 control ears, 105 MFDM, 33 NAFD, 70 TC and 88 CHARGE syndrome ears. The model detected MFDM with an accuracy of 0.969 [0.838–0.999] (p < 0.001) and an AUC (Area Under the Curve) of 0.975 within controls (binary classification). Balanced accuracies were 0.811 [0.648–0.920] (p = 0.002) in a first multiclass design (MFDM vs. controls and differential diagnoses) and 0.813 [0.544–0.960] (p = 0.003) in a second multiclass design (MFDM vs. differential diagnoses).ConclusionThis is the first AI-based syndrome detection model in dysmorphology based on the external ear, opening promising clinical applications both for local care and referral, and for expert centers.
Keywords