International Journal of Molecular Sciences (Jan 2015)

Non-Classical Gluconeogenesis-Dependent Glucose Metabolism in Rhipicephalus microplus Embryonic Cell Line BME26

  • Renato Martins da Silva,
  • Bárbara Della Noce,
  • Camila Fernanda Waltero,
  • Evenilton Pessoa Costa,
  • Leonardo Araujo de Abreu,
  • Naftaly Wang'ombe Githaka,
  • Jorge Moraes,
  • Helga Fernandes Gomes,
  • Satoru Konnai,
  • Itabajara da Silva Vaz,
  • Kazuhiko Ohashi,
  • Carlos Logullo

DOI
https://doi.org/10.3390/ijms16011821
Journal volume & issue
Vol. 16, no. 1
pp. 1821 – 1839

Abstract

Read online

In this work we evaluated several genes involved in gluconeogenesis, glycolysis and glycogen metabolism, the major pathways for carbohydrate catabolism and anabolism, in the BME26 Rhipicephalus microplus embryonic cell line. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by alterations in energy resource availability (primarily glucose). BME26 cells in media were investigated using three different glucose concentrations, and changes in the transcription levels of target genes in response to carbohydrate utilization were assessed. The results indicate that several genes, such as glycogen synthase (GS), glycogen synthase kinase 3 (GSK3), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6 phosphatase (GP) displayed mutual regulation in response to glucose treatment. Surprisingly, the transcription of gluconeogenic enzymes was found to increase alongside that of glycolytic enzymes, especially pyruvate kinase, with high glucose treatment. In addition, RNAi data from this study revealed that the transcription of gluconeogenic genes in BME26 cells is controlled by GSK-3. Collectively, these results improve our understanding of how glucose metabolism is regulated at the genetic level in tick cells.

Keywords