Acta Electrotechnica et Informatica (Sep 2023)
Parking Management System Based on Key Points Detection
Abstract
In urban areas, efficient parking management is crucial for reducing traffic congestion and environmental impact. This research introduces a new view for making the parking management system that leverages the capabilities of the NVidia Jetson Nano Single Board Computer (SBC) and OpenCV for real-time detection and classification of parking slot occupancy. Unlike traditional systems that rely on intrusive sensors, our proposed solution employs non-intrusive Oriented Fast and Rotated Brief (ORB) key point detection techniques using video feeds. The system architecture integrates video stream processing, ORB via OpenCV, cloud-based data storage, and a Flask server for user notifications. The methodology prioritizes traditional computer vision methods optimized for the Jetson Nano’s CUDA cores, offering a computationally efficient alternative to deep learning approaches. Python’s versatility and MongoDB’s document-based storage are employed for backend development. Our system’s performance, evaluated using open datasets, demonstrates high accuracy, precision, recall, and F1 scores, underlining its effectiveness in real-world urban parking scenarios. This study not only presents a robust solution for parking management but also opens avenues for similar applications in traffic measurement and urban planning.
Keywords