Applied Sciences (Apr 2019)

An Ultrashort-Term Net Load Forecasting Model Based on Phase Space Reconstruction and Deep Neural Network

  • Fei Mei,
  • Qingliang Wu,
  • Tian Shi,
  • Jixiang Lu,
  • Yi Pan,
  • Jianyong Zheng

DOI
https://doi.org/10.3390/app9071487
Journal volume & issue
Vol. 9, no. 7
p. 1487

Abstract

Read online

Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.

Keywords