BioMedical Engineering OnLine (Sep 2011)
New approach for T-wave end detection on electrocardiogram: Performance in noisy conditions
Abstract
Abstract Background The detection of T-wave end points on electrocardiogram (ECG) is a basic procedure for ECG processing and analysis. Several methods have been proposed and tested, featuring high accuracy and percentages of correct detection. Nevertheless, their performance in noisy conditions remains an open problem. Methods A new approach and algorithm for T-wave end location based on the computation of Trapezium's areas is proposed and validated (in terms of accuracy and repeatability), using signals from the Physionet QT Database. The performance of the proposed algorithm in noisy conditions has been tested and compared with one of the most used approaches for estimating the T-wave end point: the method based on the threshold on the first derivative. Results The results indicated that the proposed approach based on Trapezium's areas outperformed the baseline method with respect to accuracy and repeatability. Also, the proposed method is more robust to wideband noise. Conclusions The trapezium-based approach has a good performance in noisy conditions and does not rely on any empirical threshold. It is very adequate for use in scenarios where the levels of broadband noise are significant.