International Journal of Group Theory (Dec 2020)

On finite-by-nilpotent profinite groups

  • Eloisa Detomi,
  • Marta Morigi

DOI
https://doi.org/10.22108/ijgt.2019.119581.1577
Journal volume & issue
Vol. 9, no. 4
pp. 223 – 229

Abstract

Read online

Let $\gamma_n=[x_1,\ldots,x_n]$ be the $n$th lower central word‎. ‎Suppose that $G$ is a profinite group‎ ‎where the conjugacy classes $x^{\gamma_n(G)}$ contains less than $2^{\aleph_0}$‎ ‎elements‎ ‎for any $x \in G$‎. ‎We prove that then $\gamma_{n+1}(G)$ has finite order‎. ‎This generalizes the much celebrated‎ ‎theorem of B‎. ‎H‎. ‎Neumann that says that the commutator subgroup of a BFC-group is finite‎. ‎Moreover‎, ‎it implies that‎ ‎a profinite group $G$ is finite-by-nilpotent if and only if there is a positive integer $n$ such that‎ ‎$x^{\gamma_n(G)}$ contains less than $2^{\aleph_0}$‎ ‎elements‎, ‎for any $x\in G$‎.

Keywords