Green Analytical Chemistry (Apr 2022)

A fully-printed electrochemical platform for assisted colorimetric detection of phosphate in saliva: Greenness and whiteness quantification by the AGREE and RGB tools

  • Vincenzo Mazzaracchio,
  • Alessandro Sassolini,
  • Kalyan Y. Mitra,
  • Dana Mitra,
  • Goran M. Stojanović,
  • Andreas Willert,
  • Enrico Sowade,
  • Reinhard R. Baumann,
  • Ralf Zichner,
  • Danila Moscone,
  • Fabiana Arduini

Journal volume & issue
Vol. 1
p. 100006

Abstract

Read online

Herein, we report the environmental impact quantification of a newly developed fully printed electrochemical device to assist a colorimetric detection of phosphate in saliva. The evaluation of the analytical procedure was performed according to the principles of Green Analytical Chemistry and White Analytical Chemistry. The standard method for phosphate detection relies on a reaction between phosphate and molybdate in presence of antimony potassium tartrate and ascorbic acid, using strong acid conditions and high volumes of reagents (100–500 mL). To deliver an eco-friendly method, we have combined a screen-printed electrode with a liquid electrolyte battery and inkjet-printed conductive paths to develop a fully printed device on a flexible polymer substrate avoiding the use of ascorbic acid and using a small amount of reagents. The printed sensor was first developed and optimized for phosphate detection in saliva, allowing for a detection limit equal to 26 µM and satisfactory repeatability (relative standard deviation value of 7.5%). Finally, the AGREE and the RGB assessment tools were applied for a quantitative evaluation of the proposed sensor and reference method, in agreement with the Green Analytical and White Analytical principles. The results demonstrated the lower environmental impact of the proposed sensor, as well as the suitability of this novel approach for phosphate detection in saliva.

Keywords