Crystals (May 2024)
Superlattice Delineated Fermi Surface Nesting and Electron-Phonon Coupling in CaC<sub>6</sub>
Abstract
The superconductivity of CaC6 as a function of pressure and Ca isotopic composition was revisited using DFT calculations on a 2c–double hexagonal superlattice. The introduction of superlattices was motivated by previous synchrotron absorption and Raman spectroscopy results on other superconductors that showed evidence of superlattice vibrations at low (THz) frequencies. For CaC6, superlattices have previously been invoked to explain the ARPES data. A superlattice along the hexagonal c-axis direction is also illustrative of atomic orbital symmetry and periodicity, including bonding and antibonding s-orbital character implied by cosine-modulated electronic bands. Inspection of the cosine band revealed that the cosine function has a small (meV) energy difference between the bonding and antibonding regions, relative to a midpoint non-bonding energy. Fermi surface nesting was apparent in an appropriately folded Fermi surface using a superlattice construct. Nesting relationships identified phonon vectors for the conservation of energy and for phase coherency between coupled electrons at opposite sides of the Fermi surface. A detailed analysis of this Fermi surface nesting provided accurate estimates of the superconducting gaps for CaC6 with the change in applied pressure. The recognition of superlattices within a rhombohedral or hexagonal representation provides consistent mechanistic insight on superconductivity and electron−phonon coupling in CaC6.
Keywords