The Korean Journal of Gastroenterology (Jul 2019)

Development of a Pancreatic Cancer Specific Binding Peptide Using Phage Display

  • Dong Won Lee,
  • Jae Myung Park,
  • Seung Mok Yang,
  • Moon Hwa Kwak,
  • Yoon Jin Roh,
  • In Seok Lee,
  • Myung-Gyu Choi

DOI
https://doi.org/10.4166/kjg.2019.74.1.30
Journal volume & issue
Vol. 74, no. 1
pp. 30 – 41

Abstract

Read online

Background/Aims: Pancreatic cancer has a very poor prognosis, and early diagnosis is a way to increase the survival rate of patients. The purpose of this study was to develop pancreatic cancer-specific peptides for imaging studies. Methods: Three pancreatic cancer cell lines, MIA PaCa-2, UACC-462, and BxPC-3, and a control cell line, CCD841, were used. Biopannings were performed on MIA PaCa-2 using a phage display library. After this, the peptides were synthesized and labeled with fluorescein isothiocyanate (FITC). Immunocytochemistry (ICC), enzyme-linked immunosorbent assay (ELISA), and fluorescence-activated cell sorter (FACS) were performed to examine the specific binding. To examine its therapeutic applications, a photosensitizer, chlorin e6 (Ce6), was conjugated on the peptide and photodynamic therapy was performed. Cell survival was investigated using a [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay. Results: After three biopannings, the phages were amplified from 1.4×104 to 3.2×105 plaque-forming units. The most strongly binding phage was selected from the ELISA and ICC results. FITC-labeled peptide, M5, in the three pancreatic cancer cell lines showed significantly higher immunofluorescence in the ICC experiments than that of CCD841. The higher binding ability to MIA PaCa-2 cells was confirmed from FACS analysis, which showed a right shift compared to CCD841. M5 bound to Ce6 showed a significantly lower cell survival rate than that of Ce6 alone in photodynamic therapy, which was observed consistently as a change in the tumor size and fluorescence intensity in MIA PaCa-2 cell-implanted animal models. Conclusions: This study showed that the noble peptide, M5, binds specifically to the pancreatic cancer cell line, MIA PaCa-2. The M5 peptide has potential use in future optical diagnostic and therapeutic purposes

Keywords