Energies (Feb 2022)

A Study on Frequency Stability and Primary Frequency Response of the Korean Electric Power System Considering the High Penetration of Wind Power

  • SungHoon Lim,
  • Taewan Kim,
  • Kipo Yoon,
  • DongHee Choi,
  • Jung-Wook Park

DOI
https://doi.org/10.3390/en15051784
Journal volume & issue
Vol. 15, no. 5
p. 1784

Abstract

Read online

The high penetration of wind power decreases the system inertia and primary frequency reserve while replacing the conventional synchronous generators (SGs). Therefore, if the system operator does not take appropriate action on the remaining generation units (GUs) operation, high penetration of wind power will aggravate the frequency stability. To solve this problem, wind power plants (WPPs) may provide the inertial response and primary frequency response (PFR) to support the frequency stability. However, due to the variability of renewable energy, WPPs may not provide adequate frequency response whenever it is required. This paper proposes an algorithm to determine the operation of GUs to provide appropriate PFR for a power system with high penetration of wind power. Through the proposed algorithm, it calculates the required PFR to restore the decreased frequency stability caused by the high penetration of wind power. Then, while considering the available PFR from WPPs, it redetermines the droop coefficient of SGs governor to provide the sufficient PFR to recover the frequency stability. Finally, the effectiveness of the proposed algorithm is verified on the practical Korean electric power system.

Keywords