Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов (Dec 2021)
Influence of alloying Ti, Mo and W on the kinetic and strength characteristics of membrane alloys based on Nb and V
Abstract
An analysis was carried out of influence of , Ti Mo and W on the nature of the amorphous nano- and crystalline structures on the strength and kinetic characteristics – diffusion D and permeability Φ of hydrogen in membrane alloys based on binary Nb - Ni and V - Ni . Doping with Nb - V alloys by titanium, molybdenum and tungsten leads to the gradual replacement of niobium and vanadium, and promotes the formation of several minor phases while acting as barriers for hydrogen diffusion, but contributing hydride reduction processes. A close dependence of the hydrogen kinetics was revealed not only on thermodynamic parameters – temperature and pressure, but also on the presence of free volume in the formed amorphous, nanocrystalline and crystalline alloys. So, the processes of selectivity, the dynamics of hydrogen – its flux J determined by the product of diffusion D and permeability Φ, J = D × Φ depend on the basic composition and the choice of alloying elements (Ti, Mo and W), as well as the formed structures – amorphous, nanocrystalline and duplex, represented by multiphase crystalline microstructures. It was found that a carefully selected composition determines the productivity of the selective process and promotes the release of high-purity hydrogen with its subsequent applications for green energy.
Keywords