Frontiers in Plant Science (Jul 2024)

Enhancing kiwifruit flower pollination detection through frequency domain feature fusion: a novel approach to agricultural monitoring

  • Fei Pan,
  • Fei Pan,
  • Mengdie Hu,
  • Mengdie Hu,
  • Xuliang Duan,
  • Xuliang Duan,
  • Boda Zhang,
  • Boda Zhang,
  • Pengjun Xiang,
  • Pengjun Xiang,
  • Lan Jia,
  • Lan Jia,
  • Xiaoyu Zhao,
  • Xiaoyu Zhao,
  • Dawei He,
  • Dawei He

DOI
https://doi.org/10.3389/fpls.2024.1415884
Journal volume & issue
Vol. 15

Abstract

Read online

The pollination process of kiwifruit flowers plays a crucial role in kiwifruit yield. Achieving accurate and rapid identification of the four stages of kiwifruit flowers is essential for enhancing pollination efficiency. In this study, to improve the efficiency of kiwifruit pollination, we propose a novel full-stage kiwifruit flower pollination detection algorithm named KIWI-YOLO, based on the fusion of frequency-domain features. Our algorithm leverages frequency-domain and spatial-domain information to improve recognition of contour-detailed features and integrates decision-making with contextual information. Additionally, we incorporate the Bi-Level Routing Attention (BRA) mechanism with C3 to enhance the algorithm’s focus on critical areas, resulting in accurate, lightweight, and fast detection. The algorithm achieves a mAP0.5 of 91.6% with only 1.8M parameters, the AP of the Female class and the Male class reaches 95% and 93.5%, which is an improvement of 3.8%, 1.2%, and 6.2% compared with the original algorithm. Furthermore, the Recall and F1-score of the algorithm are enhanced by 5.5% and 3.1%, respectively. Moreover, our model demonstrates significant advantages in detection speed, taking only 0.016s to process an image. The experimental results show that the algorithmic model proposed in this study can better assist the pollination of kiwifruit in the process of precision agriculture production and help the development of the kiwifruit industry.

Keywords