Heliyon (May 2023)

Blends of nitrophenylmaleimide isomers with carboxymethylcellulose for the preparation of supramolecular polymers

  • Maribel Montoya García,
  • Pedro Martínez Yepes,
  • Hoover Valencia Sánchez,
  • Héctor Cortés Hernández

Journal volume & issue
Vol. 9, no. 5
p. e16108

Abstract

Read online

Novel water-compatible supramolecular polymers (WCSP) based on the non-covalent interaction between carboxymethylcellulose (CMC) and o, m, and p-nitrophenylmaleimide isomers are proposed. The non-covalent supramolecular polymer was obtained from high viscosity CMC with a degree of substitution 1.03 with o, m, and p-nitrophenylmaleimide molecules that were synthesized from maleic anhydride and its corresponding nitroaniline. Subsequently, blends were made at different nitrophenylmaleimide concentrations, stirring rate, and temperatures, with 1.5% CMC, to select the best conditions for each case and to evaluate the rheological properties. The selected blends were used to form films and analyze spectroscopic, physicochemical, and biological properties. Then, the interaction between a CMC monomer and each isomer of nitrophenylmaleimide was investigated using quantum chemistry computational calculations with the B3LYP/6-311 + G (d,p) method, providing a detailed explanation of their intermolecular interactions. The supramolecular polymers obtained exhibit an increase in viscosity of blends between 20% and 30% compared to CMC, a shift in the wavenumber of the OH infrared band by approximately 66 cm−1, and the first decomposition peak at the glass transition temperature occurring between 70 and 110 °C. These changes in properties are attributed to the formation of hydrogen bonds between the species. However, the degree of substitution and the viscosity of the CMC affects the physical, chemical, and biological properties of the polymer obtained. The supramolecular polymers are biodegradable regardless of the type of blends made and are easily obtainable. Notably, the CMC with m-nitrophenylmaleimide yields the polymer with the best properties.

Keywords