Chemosensors (Sep 2022)

Au-Decorated Polyaniline-ZnO Electrospun Composite Nanofiber Gas Sensors with Enhanced Response to NO<sub>2</sub> Gas

  • Maryam Bonyani,
  • Seyed Mojtaba Zebarjad,
  • Kamal Janghorban,
  • Jin-Young Kim,
  • Hyoun Woo Kim,
  • Sang Sub Kim

DOI
https://doi.org/10.3390/chemosensors10100388
Journal volume & issue
Vol. 10, no. 10
p. 388

Abstract

Read online

Ternary systems are less studied for sensing applications due to complex synthesis procedures. However, they have more sources of resistance modulation, leading to an enhanced gas response. In this study, a ternary system, namely Au-decorated ZnO-polyaniline (PANI) composite nanofibers with different amounts of PANI (10, 25, and 50 wt.%) were synthesized for NO2 gas sensing studies. First, ZnO nanofibers were synthesized by electrospinning, and then an Au layer (9 nm) was coated on the ZnO nanofibers. Finally, PANI was coated onto the prepared Au-decorated ZnO nanofibers. NO2 gas sensing investigations indicated that the sensor with 25 wt.% PANI had the best response to NO2 gas at 300 °C. In addition, the optimized sensor exhibited high selectivity to NO2 gas. The improved performance of the optimal gas sensor was attributed to the role of Au, the formation of ZnO-PANI heterojunctions, and the optimal amount of PANI. The promising effect of this ternary system for NO2 sensing was demonstrated, and it can be extended to other similar systems.

Keywords