Heliyon (Jan 2024)
KLK10/LIPH/PARD6B/SLC52A3 are promising molecular biomarkers for the prognosis of pancreatic cancer through a ceRNA network
Abstract
Pancreatic adenocarcinoma (PAAD) remains challenging to diagnose and treat clinically due to its difficult early diagnosis, low surgical resection rate, and high risk of postoperative recurrence and metastasis. SMAD4 is a classical mutated gene in pancreatic cancer and is lost in up to 60%–90 % of PAAD patients, and its mutation often predicts a poor prognosis and treatment resistance. In this study, based on the expression profile data in The Cancer Genome Atlas database, we identified a ceRNA network composed of 2 lncRNAs, 1 miRNA, and 4 mRNAs through differential expression analysis and survival prognosis analysis. Among them, high expression of KLK10/LIPH/PARD6B/SLC52A3 influenced the prognosis and overall survival of PAAD patients. We confirmed the high expression of these target genes in pancreatic tissue of pancreatic-specific SMAD4-deficient mice. In addition, immune infiltration analysis showed that the high expression of these target genes affects the tumor immune environment and contributes to the progression of PAAD. Abnormal overexpression of these target genes may be caused by hypermethylation. In conclusion, we found that KLK10/LIPH/PARD6B/SLC52A3 is a potential prognostic marker for PAAD based on a competing endogenous RNA-mediated mechanism and revealed the potential pathogenic mechanism by which deficient expression of SMAD4 promotes pancreatic cancer progression, which provides a new pathway and theoretical basis for targeted therapy or improved prognosis of pancreatic cancer. These data will help reveal potential therapeutic targets for pancreatic cancer and improve the prognosis of pancreatic cancer patients.