BMC Public Health (Oct 2023)

Long-term exposure to ambient ozone at workplace is positively and non-linearly associated with incident hypertension and blood pressure: longitudinal evidence from the Beijing-Tianjin-Hebei medical examination cohort

  • Songhua Hu,
  • Ximing Xu,
  • Chunjun Li,
  • Li Zhang,
  • Xiaolong Xing,
  • Jiangshan He,
  • Pei Guo,
  • Jingbo Zhang,
  • Yujie Niu,
  • Shuo Chen,
  • Rong Zhang,
  • Feng Liu,
  • Shitao Ma,
  • Mianzhi Zhang,
  • Fenghua Guo,
  • Minying Zhang

DOI
https://doi.org/10.1186/s12889-023-16932-w
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background There is limited longitudinal evidence on the hypertensive effects of long-term exposure to ambient O3. We investigated the association between long-term O3 exposure at workplace and incident hypertension, diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), and mean arterial pressure (MAP) in general working adults. Methods We conducted a cohort study by recruiting over 30,000 medical examination attendees through multistage stratified cluster sampling. Participants completed a standard questionnaire and comprehensive medical examination. Three-year ambient O3 concentrations at each employed participant’s workplace were estimated using a two-stage machine learning model. Mixed-effects Cox proportional hazards models and linear mixed-effects models were used to examine the effect of O3 concentrations on incident hypertension and blood pressure parameters, respectively. Generalized additive mixed models were used to explore non-linear concentration-response relationships. Results A total of 16,630 hypertension-free working participants at baseline finished the follow-up. The mean (SD) O3 exposure was 45.26 (2.70) ppb. The cumulative incidence of hypertension was 7.11 (95% CI: 6.76, 7.47) per 100 person-years. Long-term O3 exposure was independently, positively and non-linearly associated with incident hypertension (Hazard ratios (95% CI) for Q2, Q3, and Q4 were 1.77 (1.34, 2.36), 2.06 (1.42, 3.00) and 3.43 (2.46, 4.79), respectively, as compared with the first quartile (Q1)), DBP (β (95% CI) was 0.65 (0.01, 1.30) for Q2, as compared to Q1), SBP (β (95% CI) was 2.88 (2.00, 3.77), 2.49 (1.36, 3.61) and 2.61 (1.64, 3.58) for Q2, Q3, and Q4, respectively), PP (β (95% CI) was 2.12 (1.36, 2.87), 2.03 (1.18, 2.87) and 2.14 (1.38, 2.90) for Q2, Q3, and Q4, respectively), and MAP (β (95% CI) was 1.39 (0.76, 2.02), 1.04 (0.24, 1.84) and 1.12 (0.43, 1.82) for Q2, Q3, and Q4, respectively). The associations were robust across sex, age, BMI, and when considering PM2.5 and NO2. Conclusions To our knowledge, this is the first cohort study in the general population that demonstrates the non-linear hypertensive effects of long-term O3 exposure. The findings are particularly relevant for policymakers and researchers involved in ambient pollution and public health, supporting the integration of reduction of ambient O3 into public health interventions.

Keywords