Scientific Reports (Apr 2023)

Physical behavior of PEDOT polymer electrode during magnetic resonance imaging and long-term test in the climate chamber

  • Nora Vanessa de Camp,
  • Jürgen Bergeler,
  • Frank Seifert

DOI
https://doi.org/10.1038/s41598-023-33180-5
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The PEDOT polymer electrode is a metal-free electrode, consisting of an acrylate (dental composite) and the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The electrode is applied as gel onto the skin and cured with blue light for 10–20 s in order to achieve a conductive bond to the skin. The electrodes are used in combination with polymer cables consisting of a textile backbone and PEDOT:PSS. To test this new electrode and cable type under different conditions we designed two stress-tests: highly sensitive temperature recordings within a head phantom during Magnetic Resonance Imaging (MRI) and long-term stability inside a climate chamber with high humidity. To study the physical behavior inside the strong magnetic field (3 Tesla), the PEDOT polymer electrode was attached to an agarose head-phantom inside a magnetic resonance tomograph during an image sequence. MRI-safe temperature sensors were placed nearby in order to measure possible heating effects. In comparison to a metal cable, nearly no rise in temperature could be observed if the electrode was used in combination with a conductive textile cable. Furthermore, the electrode showed stable impedance values inside a climate chamber for 4 consecutive days. These results pave the way for testing the PEDOT polymer electrode as biosignal recording electrode during MRI, especially for cardio MRI and Electroencephalography in combination with functional MRI (EEG–fMRI).