NeuroImage (Dec 2022)

The thalamocortical inhibitory network controls human conscious perception

  • Jeehye Seo,
  • Dae-Jin Kim,
  • Sang-Han Choi,
  • Hyoungkyu Kim,
  • Byoung-Kyong Min

Journal volume & issue
Vol. 264
p. 119748

Abstract

Read online

Although conscious perception is a fundamental cognitive function, its neural correlates remain unclear. It remains debatable whether thalamocortical interactions play a decisive role in conscious perception. To clarify this, we used functional magnetic resonance imaging (fMRI) where flickering red and green visual cues could be perceived either as a non-fused colour or fused colour. Here we show significantly differentiated fMRI neurodynamics only in higher-order thalamocortical regions, compared with first-order thalamocortical regions. Anticorrelated neurodynamic behaviours were observed between the visual stream network and default-mode network. Its dynamic causal modelling consistently provided compelling evidence for the involvement of higher-order thalamocortical iterative integration during conscious perception of fused colour, while inhibitory control was revealed during the non-fusion condition. Taken together with our recent magnetoencephalography study, our fMRI findings corroborate a thalamocortical inhibitory model for consciousness, where both thalamic inhibitory regulation and integrative signal iterations across higher-order thalamocortical regions are essential for conscious perception.

Keywords