Processing and Application of Ceramics (Sep 2021)

Magnetoelectric properties of materials based on barium zirconium titanate and various magnetic compounds

  • Džunuzović Adis S.,
  • Vijatović-Petrović Mirjana M.,
  • Bobić Jelena D.,
  • Ilić Nikola I.,
  • Stojanović Biljana D.

DOI
https://doi.org/10.2298/PAC2103256D
Journal volume & issue
Vol. 15, no. 3
pp. 256 – 269

Abstract

Read online

Multiferroic composites containing ferroelectric Ba(Ti0.80Zr0.20)O3 (BT80Zr20) phase and magnetic Ni0.7Zn0.3Fe2O4 (NZF), CoFe2O4 (CF) or Ni0.7Cu0.01Sm0.05Zn0.29Fe1.95O4 (NCuSmZF) phase were investigated in this study. Three composites, BT80Zr20-NZF, BT80Zr20-CF and BT80Zr20-NCuSmZF were prepared by mixing chemically synthesized powders in the planetary mill, uniaxial pressing and sintering at 1300°C. X-ray diffraction data for the single phase and composites ceramics indicated the formation of crystallized structure of both ferrites and barium zirconium titanate, without the presence of undesirable phases. Microstructure analysis has shown the formation of two types of nanosized grains, polygonal ferromagnetic andd rounded ferroelectric grains. Non-saturated hysteresis loops were evident in all composite samples possibly due to the presence of very high conductive ferrite phases. The BT80Zr20-CF has shown the lowest conductivity values in comparison with other two compounds and therefore the highest potential for ferroelectric application. The impedance investigations confirmed the presence of different relaxation processes that originate from the grain and grain boundary contributions. Investigation of J-E relation between leakage and electric field for the BT80Zr20 and composites revealed the presence of four possible mechanisms of conduction in these materials.

Keywords