Molecular and Cellular Probes (Oct 2024)

TRIM47 inhibits cisplatin chemosensitivity and endoplasmic reticulum stress-induced apoptosis of ovarian cancer cells

  • Jiao Zhao,
  • Jingru Zhang,
  • Xiaojing Tong,
  • Lili Zhao,
  • Rong Cao

Journal volume & issue
Vol. 77
p. 101978

Abstract

Read online

Ovarian cancer (OC) is the fifth most common cause of death in women worldwide. Chemoresistance is a key reason for treatment failure, causing high mortality. As a member of the tripartite motif-containing (TRIM) protein family, tripartite motif 47 (TRIM47) plays a vital role in the carcinogenesis and drug resistance of various cancers. This study investigated the impact and mechanisms of TRIM47 on cisplatin (DDP) chemosensitivity and apoptosis in OC. OC cell viability was assessed with a cell counting kit-8 assay and OC cell apoptosis was assessed using flow cytometry, caspase-3 and caspase-9 activity, and Bax and Bcl-2 expression assays while gene and protein expression were assessed using qRT–PCR and Western blot assays. The expression of TRIM47 was significantly increased in both DDP-resistant tissues from patients with OC tissues and in cancer cell lines compared with that in normal tissue or parental cell lines. The increased level of TRIM47 correlated with poor prognosis in patients with OC. Functional assays demonstrated that TRIM47 promoted DDP resistance both in vitro and in vivo. The increased viability and reduced apoptosis of OC cells induced by TRIM47 can be rescued by the endoplasmic reticulum (ER) stress–inducer tunicamycin, suggesting that TRIM47 inhibits OC cell apoptosis by suppressing ER stress. Therefore, TRIM47 may be targeted as a therapeutic strategy for DDP resistance in OC.

Keywords