Arthritis Research & Therapy (Nov 2023)

Assessment of axial spondyloarthritis activity using a magnetic resonance imaging-based multi-region-of-interest fusion model

  • Peijin Xin,
  • Qizheng Wang,
  • Ruixin Yan,
  • Yongye Chen,
  • Yupeng Zhu,
  • Enlong Zhang,
  • Cui Ren,
  • Ning Lang

DOI
https://doi.org/10.1186/s13075-023-03193-6
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Identifying axial spondyloarthritis (axSpA) activity early and accurately is essential for treating physicians to adjust treatment plans and guide clinical decisions promptly. The current literature is mostly focused on axSpA diagnosis, and there has been thus far, no study that reported the use of a radiomics approach for differentiating axSpA disease activity. In this study, the aim was to develop a radiomics model for differentiating active from non-active axSpA based on fat-suppressed (FS) T2-weighted (T2w) magnetic resonance imaging (MRI) of sacroiliac joints. Methods This retrospective study included 109 patients diagnosed with non-active axSpA (n = 68) and active axSpA (n = 41); patients were divided into training and testing cohorts at a ratio of 8:2. Radiomics features were extracted from 3.0 T sacroiliac MRI using two different heterogeneous regions of interest (ROIs, Circle and Facet). Various methods were used to select relevant and robust features, and different classifiers were used to build Circle-based, Facet-based, and a fusion prediction model. Their performance was compared using various statistical parameters. p < 0.05 is considered statistically significant. Results For both Circle- and Facet-based models, 2284 radiomics features were extracted. The combined fusion ROI model accurately differentiated between active and non-active axSpA, with high accuracy (0.90 vs.0.81), sensitivity (0.90 vs. 0.75), and specificity (0.90 vs. 0.85) in both training and testing cohorts. Conclusion The multi-ROI fusion radiomics model developed in this study differentiated between active and non-active axSpA using sacroiliac FS T2w-MRI. The results suggest MRI-based radiomics of the SIJ can distinguish axSpA activity, which can improve the therapeutic result and patient prognosis. To our knowledge, this is the only study in the literature that used a radiomics approach to determine axSpA activity.

Keywords