Sensors (Aug 2024)

Atrial Fibrillation Prediction Based on Recurrence Plot and ResNet

  • Haihang Zhu,
  • Nan Jiang,
  • Shudong Xia,
  • Jijun Tong

DOI
https://doi.org/10.3390/s24154978
Journal volume & issue
Vol. 24, no. 15
p. 4978

Abstract

Read online

Atrial fibrillation (AF) is the most prevalent form of arrhythmia, with a rising incidence and prevalence worldwide, posing significant implications for public health. In this paper, we introduce an approach that combines the Recurrence Plot (RP) technique and the ResNet architecture to predict AF. Our method involves three main steps: using wavelet filtering to remove noise interference; generating RPs through phase space reconstruction; and employing a multi-level chained residual network for AF prediction. To validate our approach, we established a comprehensive database consisting of electrocardiogram (ECG) recordings from 1008 AF patients and 48,292 Non-AF patients, with a total of 2067 and 93,129 ECGs, respectively. The experimental results demonstrated high levels of prediction precision (90.5%), recall (89.1%), F1 score (89.8%), accuracy (93.4%), and AUC (96%) on our dataset. Moreover, when tested on a publicly available AF dataset (AFPDB), our method achieved even higher prediction precision (94.8%), recall (99.4%), F1 score (97.0%), accuracy (97.0%), and AUC (99.7%). These findings suggest that our proposed method can effectively extract subtle information from ECG signals, leading to highly accurate AF predictions.

Keywords