Journal of Genetic Engineering and Biotechnology (Sep 2019)

Purification, characterization, and structural elucidation of serralysin-like alkaline metalloprotease from a novel source

  • Swathi Nageswara,
  • Girijasankar Guntuku,
  • Bhagya Lakshmi Yakkali

DOI
https://doi.org/10.1186/s43141-019-0002-7
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Serratiopeptidase is an alkaline metalloendopeptidase, which acquired wide significance because of its therapeutic applications. The present study was undertaken for purification, characterization, and structural elucidation of serratiopeptidase produced from Streptomyces hydrogenans var. MGS13. Result The crude enzyme was purified by precipitating with ammonium sulfate, dialysis, and Sephadex gel filtration, resulting in 34% recovery with a 12% purification fold. The purified enzyme S.AMP13 was spotted as a single clear hydrolytic band on casein zymogram and whose molecular weight was found to be 32 kDa by SDS-PAGE. The inhibitor and stability studies revealed that this enzyme is metalloprotease, thermostable, and alkaline in nature. The maximum serratiopeptidase activity was observed at 37 °C and pH 9.0. The partial amino acid sequence of the purified enzyme S.AMP13 by LC-MS/MS analysis shows the closest sequence similarities with previously reported alkaline metalloendopeptidases. The amino acid sequence alignment of S.AMP13 shared a conserved C-terminus region with peptidase-M10 serralysin superfamily at amino acid positions 128–147, i.e., ANLSTRATDTVYGFNSTAGR revealed that this enzyme is a serralysin-like protease. The kinetic studies of the purified enzyme revealed a K m of 1 mg/mL for its substrate casein and V max of 319 U/mL/min. The 3D structure of the purified enzyme was modeled by using SWISS-MODEL, and the quality of the structure was authenticated by assessing the Ramachandran plot using PROCHECK server, which suggested that the enzyme was stable with good quality. Conclusion Inhibitor, stability, electrophoretic, and bioinformatic studies suggested that the purified enzyme obtained from S. hydrogenans var. MGS13 is a serralysin-like protease.

Keywords