Boletim da Sociedade Paranaense de Matemática (Feb 2022)
Existence of entropy solutions of the anisotropic elliptic nonlinear problem with measure data in weighted Sobolev space
Abstract
This paper is devoted to study the following nonlinear anisotropic elliptic unilateral problem \begin{equation*} \begin{cases} A\,u -\mbox{div}\,\phi(u)=\mu \quad \mbox{in} \qquad \Omega \\ \;u=0 \qquad \mbox{on} \quad \partial \Omega , \end{cases} \end{equation*} where the right hand side $\,\mu\;$ belongs to $\; L^1(\Omega)+ W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$. The operator $\displaystyle A\,u=-\sum_{i=1}^{N}\partial_{i}\,a_{i}(x,\ u,\ \nabla u)$ is a Leray-Lions anisotropic operator acting from $\; W_{0}^{1,\overrightarrow{p}} (\Omega,\ \overrightarrow{\omega})\;$ into its dual $\; W_{0}^{-1,\overrightarrow{p}'} (\Omega,\ \overrightarrow{\omega}^*)$ and $\phi_{i}\in C^{0}(\mathbb{R},\mathbb{R})$.