Sensors (Mar 2019)

Next Location Prediction Based on an Adaboost-Markov Model of Mobile Users

  • Hongjun Wang,
  • Zhen Yang,
  • Yingchun Shi

DOI
https://doi.org/10.3390/s19061475
Journal volume & issue
Vol. 19, no. 6
p. 1475

Abstract

Read online

As an emerging class of spatial trajectory data, mobile user trajectory data can be used to analyze individual or group behavioral characteristics, hobbies and interests. Besides, the information extracted from original trajectory data is widely used in smart cities, transportation planning, and anti-terrorism maintenance. In order to identify the important locations of the target user from his trajectory data, a novel division method for preprocessing trajectory data is proposed, the feature points of original trajectory are extracted according to the change of trajectory structural, and then important locations are extracted by clustering the feature points, using an improved density peak clustering algorithm. Finally, in order to predict next location of mobile users, a multi-order fusion Markov model based on the Adaboost algorithm is proposed, the model order k is adaptively determined, and the weight coefficients of the 1~k-order models are given by the Adaboost algorithm according to the importance of various order models, a multi-order fusion Markov model is generated to predict next important location of the user. The experimental results on the real user trajectory dataset Geo-life show that the prediction performance of Adaboost-Markov model is better than the multi-order fusion Markov model with equal coefficient, and the universality and prediction performance of Adaboost-Markov model is better than the first to third order Markov models.

Keywords