Scientific Reports (Aug 2022)

Feasibility of low-cost particle sensor types in long-term indoor air pollution health studies after repeated calibration, 2019–2021

  • Elle Anastasiou,
  • M. J. Ruzmyn Vilcassim,
  • John Adragna,
  • Emily Gill,
  • Albert Tovar,
  • Lorna E. Thorpe,
  • Terry Gordon

DOI
https://doi.org/10.1038/s41598-022-18200-0
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Previous studies have explored using calibrated low-cost particulate matter (PM) sensors, but important research gaps remain regarding long-term performance and reliability. Evaluate longitudinal performance of low-cost particle sensors by measuring sensor performance changes over 2 years of use. 51 low-cost particle sensors (Airbeam 1 N = 29; Airbeam 2 N = 22) were calibrated four times over a 2-year timeframe between 2019 and 2021. Cigarette smoke-specific calibration curves for Airbeam 1 and 2 PM sensors were created by directly comparing simultaneous 1-min readings of a Thermo Scientific Personal DataRAM PDR-1500 unit with a 2.5 µm inlet. Inter-sensor variability in calibration coefficient was high, particularly in Airbeam 1 sensors at study initiation. Calibration coefficients for both sensor types trended downwards over time to < 1 at final calibration timepoint [Airbeam 1 Mean (SD) = 0.87 (0.20); Airbeam 2 Mean (SD) = 0.96 (0.27)]. We lost more Airbeam 1 sensors (N = 27 out of 56, failure rate 48.2%) than Airbeam 2 (N = 2 out of 24, failure rate 8.3%) due to electronics, battery, or data output issues. Evidence suggests degradation over time might depend more on particle sensor type, rather than individual usage. Repeated calibrations of low-cost particle sensors may increase confidence in reported PM levels in longitudinal indoor air pollution studies.