Biomolecules (Mar 2019)

Matrix Metalloproteinase 9 as a Predictor of Coronary Atherosclerotic Plaque Instability in Stable Coronary Heart Disease Patients with Elevated Lipoprotein(a) Levels

  • Marat Ezhov,
  • Maya Safarova,
  • Olga Afanasieva,
  • Maksim Mitroshkin,
  • Yuri Matchin,
  • Sergei Pokrovsky

DOI
https://doi.org/10.3390/biom9040129
Journal volume & issue
Vol. 9, no. 4
p. 129

Abstract

Read online

We sought to investigate whether levels of matrix metalloproteinases (MMPs) and their inhibitors predict coronary atherosclerotic plaque instability, as assessed by intravascular ultrasound (IVUS) virtual histology during coronary angiography. Blood samples were collected before angiography in 32 subjects (mean age 56 ± 8 years) with stable coronary heart disease (CHD) and elevated lipoprotein(a) (Lp(a), 94 ± 35 mg/dL). Levels of high-sensitivity C-reactive protein (hsCRP), apolipoprotein B100 (apoB100), MMP-7, MMP-9, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2 were determined using commercially available enzyme-linked immunosorbent assay kits. Results. The morphology of a total of sixty coronary lesions was assessed by virtual histology IVUS imaging. Eleven (18%) plaques in nine (28%) patients were classified as plaques with an unstable phenotype or a thin-cap fibroatheroma. Age, low-density lipoprotein cholesterol, apoB100, MMP-7, and MMP-9 levels were positively associated with necrotic core volume. Conversely, there was a negative relationship between MMP-7 and -9 levels and fibrous and fibro-fatty tissue volume. Multivariate regression analysis revealed that MMP-9 is a strong independent predictor of atherosclerotic plaque instability in stable CHD patients. In stable CHD patients with elevated Lp(a), MMP-9 levels are positively associated with the size of the necrotic core of coronary atherosclerotic plaques.

Keywords