Applied Bionics and Biomechanics (Jan 2012)
Acquisition and Analysis of EMG Signals to Recognize Multiple Hand Movements for Prosthetic Applications
Abstract
One of the main problems in developing active prosthesis is how to control them in a natural way. In order to increase the effectiveness of hand prostheses there is a need in better exploiting electromyography (EMG) signals. After an analysis of the movements necessary for grasping, we individuated five movements for the wrist-hand mobility. Then we designed the basic electronics and software for the acquisition and the analysis of the EMG signals. We built a small size electronic device capable of registering them that can be integrated into a hand prosthesis. Among all the numerous muscles that move the fingers, we have chosen the ones in the forearm and positioned only two electrodes. To recognize the operation, we developed a classification system, using a novel integration of Artificial Neural Networks (ANN) and wavelet features.