Journal of Functional Biomaterials (Oct 2024)
Nanofat Improves Vascularization and Tissue Integration of Dermal Substitutes without Affecting Their Biocompatibility
Abstract
Dermal substitutes require sufficient tissue integration and vascularization to be successfully covered with split-thickness skin grafts. To rapidly achieve this, we provide the proof of principle for a novel vascularization strategy with high translational potential. Nanofat was generated from subcutaneous adipose tissue of green fluorescence protein (GFP)+ C57BL/6J donor mice and seeded onto small samples (4 mm in diameter) of the clinically approved dermal substitute Integra®. These samples and non-seeded controls were then implanted into full-thickness skin defects in the dorsal skinfold chamber of C57BL/6J wild-type mice and analyzed by intravital fluorescence microscopy, histology and immunohistochemistry over a 14-day period. Nanofat-seeded dermal substitutes exhibited an accelerated vascularization, as indicated by a significantly higher functional microvessel density on days 10 and 14 when compared to controls. This was primarily caused by the reassembly of GFP+ microvascular fragments inside the nanofat into microvascular networks. The improved vascularization promoted integration of the implants into the surrounding host tissue, which finally exhibited an increased formation of a collagen-rich granulation tissue. There were no marked differences in the inflammatory host tissue reaction to nanofat-seeded and control implants. These findings demonstrate that nanofat significantly improves the in vivo performance of dermal substitutes without affecting their biocompatibility.
Keywords