Journal of Marine Science and Engineering (Aug 2021)
A Modelling Approach for the Assessment of Wave-Currents Interaction in the Black Sea
Abstract
In this study, we investigate wave-currents interaction for the first time in the Black Sea, implementing a coupled numerical system based on the ocean circulation model NEMO v4.0 and the third-generation wave model WaveWatchIII v5.16. The scope is to evaluate how the waves impact the surface ocean dynamics, through assessment of temperature, salinity and surface currents. We provide also some evidence on the way currents may impact on sea-state. The physical processes considered here are Stokes–Coriolis force, sea-state dependent momentum flux, wave-induced vertical mixing, Doppler shift effect, and stability parameter for computation of effective wind speed. The numerical system is implemented for the Black Sea basin (the Azov Sea is not included) at a horizontal resolution of about 3 km and at 31 vertical levels for the hydrodynamics. Wave spectrum has been discretised into 30 frequencies and 24 directional bins. Extensive validation was conducted using in-situ and satellite observations over a five-year period (2015–2019). The largest positive impact of wave-currents interaction is found during Winter while the smallest is in Summer. In the uppermost 200 m of the Black Sea, the average reductions of temperature and salinity error are about −3% and −6%, respectively. Regarding waves, the coupling enhanced the model skill, reducing the simulation error, about −2%.
Keywords