Molecules (Oct 2024)

Theoretical Investigation into Polymorphic Transformation between β-HMX and δ-HMX by Finite Temperature String

  • Xiumei Jia,
  • Zhendong Xin,
  • Yizheng Fu,
  • Hongji Duan

DOI
https://doi.org/10.3390/molecules29204819
Journal volume & issue
Vol. 29, no. 20
p. 4819

Abstract

Read online

Polymorphic transformation is important in chemical industries, in particular, in those involving explosive molecular crystals. However, due to simulating challenges in the rare event method and collective variables, understanding the transformation mechanism of molecular crystals with a complex structure at the molecular level is poor. In this work, with the constructed order parameters (OPs) and K-means clustering algorithm, the potential of mean force (PMF) along the minimum free-energy path connecting β-HMX and δ-HMX was calculated by the finite temperature string method in the collective variables (SMCV), the free-energy profile and nucleation kinetics were obtained by Markovian milestoning with Voronoi tessellations, and the temperature effect on nucleation was also clarified. The barriers of transformation were affected by the finite-size effects. The configuration with the lower potential barrier in the PMF corresponded to the critical nucleus. The time and free-energy barrier of the polymorphic transformation were reduced as the temperature increased, which was explained by the pre-exponential factor and nucleation rate. Thus, the polymorphic transformation of HMX could be controlled by the temperatures, as is consistent with previous experimental results. Finally, the HMX polymorph dependency of the impact sensitivity was discussed. This work provides an effective way to reveal the polymorphic transformation of the molecular crystal with a cyclic molecular structure, and further to prepare the desired explosive by controlling the transformation temperature.

Keywords