Brain Sciences (Mar 2022)

Effects of Vibrotactile Biofeedback Providing Real-Time Pressure Information on Static Balance Ability and Weight Distribution Symmetry Index in Patients with Chronic Stroke

  • Ho Kim,
  • Hongjun Kim,
  • Won-Seob Shin

DOI
https://doi.org/10.3390/brainsci12030358
Journal volume & issue
Vol. 12, no. 3
p. 358

Abstract

Read online

Training with visual and auditory biofeedback, in patients with stroke, improved balance ability and asymmetric posture. We developed a new biofeedback training device to prevent falls and improve balance ability in patients with stroke. This device corrects motion errors by collecting the pressure information of patients in real-time. This randomized crossover study aimed to investigate the effect of this biofeedback training on the static balance ability and weight distribution symmetry index in 24 patients with chronic stroke. Pressure sensor-based vibrotactile biofeedback, visual biofeedback providing posture information, and standing without biofeedback were randomly applied for 1 d each with 24 h washout intervals to minimize adaptation. The static balance ability was measured for each biofeedback training type, and the weight distribution symmetry index was calculated using the collected weight-bearing rate data. The static balance ability and weight distribution symmetry index differed significantly according to the type of biofeedback training used. Post-hoc analysis revealed significant differences in the order of newly developed vibrotactile biofeedback, visual biofeedback, and standing without biofeedback. These findings provide evidence that pressure sensor-based vibrotactile biofeedback improves static balance ability and weight support rates by proposing better intervention for patients with chronic stroke in the clinical environment.

Keywords