Cells (Aug 2020)
Loganin Attenuates High Glucose-Induced Schwann Cells Pyroptosis by Inhibiting ROS Generation and NLRP3 Inflammasome Activation
Abstract
Diabetic peripheral neuropathy (DPN) is caused by hyperglycemia, which induces oxidative stress and inflammatory responses that damage nerve tissue. Excessive generation of reactive oxygen species (ROS) and NOD-like receptor protein 3 (NLRP3) inflammasome activation trigger the inflammation and pyroptosis in diabetes. Schwann cell dysfunction further promotes DPN progression. Loganin has been shown to have antioxidant and anti-inflammatory neuroprotective activities. This study evaluated the neuroprotective effect of loganin on high-glucose (25 mM)-induced rat Schwann cell line RSC96 injury, a recognized in vitro cell model of DPN. RSC96 cells were pretreated with loganin (0.1, 1, 10, 25, 50 μM) before exposure to high glucose. Loganin’s effects were examined by CCK-8 assay, ROS assay, cell death assay, immunofluorescence staining, quantitative RT–PCR and western blot. High-glucose-treated RSC96 cells sustained cell viability loss, ROS generation, NF-κB nuclear translocation, P2 × 7 purinergic receptor and TXNIP (thioredoxin-interacting protein) expression, NLRP3 inflammasome (NLRP3, ASC, caspase-1) activation, IL-1β and IL-18 maturation and gasdermin D cleavage. Those effects were reduced by loganin pretreatment. In conclusion, we found that loganin’s antioxidant effects prevent RSC96 Schwann cell pyroptosis by inhibiting ROS generation and suppressing NLRP3 inflammasome activation.
Keywords