Journal of NeuroEngineering and Rehabilitation (Aug 2005)
Stride-to-stride variability while backward counting among healthy young adults
Abstract
Abstract Background Little information exists about the involvement of attention in the control of gait rhythmicity. Variability of both stride time and stride length is closely related to the control of the rhythmic stepping mechanism. We sought 1) to determine whether backward counting while walking could provoke significant gait changes in mean values and coefficients of variation of stride velocity, stride time and stride length among healthy young adults; and 2) to establish whether change in stride-to-stride variability could be related to dual-task related stride velocity change, attention, or both. Methods Mean values and coefficients of variation of stride velocity, stride time and stride length were recorded using the Physilog®-system, at a self-selected walking speed in 49 healthy young adults (mean age 24.1 ± 2.8 years, women 49%) while walking alone and walking with simultaneous backward counting. Performance on backward counting was evaluated by recording the number of figures counted while sitting alone and while walking. Results Compared with walking alone, a significant dual-task-related decrease was found for the mean values of stride velocity (p p p = 0.015, respectively). Stride length parameters did not change significantly between both walking conditions. Dual-task-related increase of coefficient of variation of stride time was explained by changing stride velocity and variability between subjects but not by backward counting. The number of figures counted while walking decreased significantly compared to backward counting alone. Further, the dual-task related decrease of the number of enumerated figures was significantly higher than the dual-task related decrease of stride velocity (p = 0.013). Conclusion The observed performance-changes in gait and backward counting while dual tasking confirm that certain aspects of walking are attention-demanding in young adults. In the tested group of 49 young volunteers, dual tasking caused a small decrease in stride velocity and a slight increase in the stride-to-stride variability of stride time, while stride velocity variability was not affected by the attention-demanding task. The increase in stride time variability was apparently the result of a change in gait speed, but not a result of dual tasking. This suggests that young adults require minimal attention for the control of the rhythmic stepping mechanism while walking.
Keywords