Information (Dec 2023)
MulticloudFL: Adaptive Federated Learning for Improving Forecasting Accuracy in Multi-Cloud Environments
Abstract
Cloud computing and relevant emerging technologies have presented ordinary methods for processing edge-produced data in a centralized manner. Presently, there is a tendency to offload processing tasks as close to the edge as possible to reduce the costs and network bandwidth used. In this direction, we find efforts that materialize this paradigm by introducing distributed deep learning methods and the so-called Federated Learning (FL). Such distributed architectures are valuable assets in terms of efficiently managing resources and eliciting predictions that can be used for proactive adaptation of distributed applications. In this work, we focus on deep learning local loss functions in multi-cloud environments. We introduce the MulticloudFL system that enhances the forecasting accuracy, in dynamic settings, by applying two new methods that enhance the prediction accuracy in applications and resources monitoring metrics. The proposed algorithm’s performance is evaluated via various experiments that confirm the quality and benefits of the MulticloudFL system, as it improves the prediction accuracy on time-series data while reducing the bandwidth requirements and privacy risks during the training process.
Keywords