Membranes (Dec 2020)

Treatment of Electroplating Wastewater Using NF pH-Stable Membranes: Characterization and Application

  • Ignacio Hegoburu,
  • Karina Listiarini Zedda,
  • Svetlozar Velizarov

DOI
https://doi.org/10.3390/membranes10120399
Journal volume & issue
Vol. 10, no. 12
p. 399

Abstract

Read online

Industrial adoption of nanofiltration (NF) for treatment of low-pH wastewater is hindered by the limited membrane lifetime at strongly acidic conditions. In this study, the electroplating wastewater (EPWW) filtration performance of a novel pH-stable NF membrane is compared against a commercial NF membrane and a reverse osmosis (RO) membrane. The presented membrane is relatively hydrophobic and has its isoelectric point (IEP) at pH 4.1, with a high and positive zeta potential of +10 mV at pH 3. A novel method was developed to determine the molecular weight cut-off (MWCO) at a pH of 2, with a finding that the membrane maintains the same MWCO (~500 Da) as under neutral pH operating conditions, whereas the commercial membrane significantly increases it. In crossflow filtration experiments with simulated EPWW, rejections above 75% are observed for all heavy metals (compared to only 30% of the commercial membrane), while keeping the same pH in the feed and permeate. Despite the relatively lower permeance of the prepared membrane (~1 L/(m2·h·bar) versus ~4 L/(m2·h·bar) of the commercial membrane), its high heavy metals rejection coupled with a very low acid rejection makes it suitable for acid recovery applications.

Keywords