Drones (Dec 2023)

A Co-Adaptation Method for Resilience Rebound in Unmanned Aerial Vehicle Swarms in Surveillance Missions

  • Kunlun Wei,
  • Tao Zhang,
  • Chuanfu Zhang

DOI
https://doi.org/10.3390/drones8010004
Journal volume & issue
Vol. 8, no. 1
p. 4

Abstract

Read online

An unmanned aerial vehicle (UAV) swarm is a fast-moving system where self-adaption is necessary when conducting a mission. The major causative factors of mission failures are inevitable disruptive events and uncertain threats. Given the unexpected disturbances of events and threats, it is important to study how a UAV swarm responds and enable the swarm to enhance resilience and alleviate negative influences. Cooperative adaptation must be established between the swarm’s structure and dynamics, such as communication links and UAV states. Thus, based on previous structural adaptation and dynamic adaptation models, we provide a co-adaptation model for UAV swarms that combines a swarm’s structural characteristics with its dynamic characteristics. The improved model can deal with malicious events and contribute to a rebound in the swarm’s performance. Based on the proposed co-adaptation model, an improved resilience metric revealing the discrepancy between the minimum performance and the standard performance is proposed. The results from our simulation experiments show that the surveillance performance of a UAV swarm bounces back to its initial state after disruptions happen in co-adaptation cases. This metric demonstrates that our model can contribute towards the swarm’s overall systemic resiliency by withstanding and resisting unpredictable threats and disruptions. The model and metric proposed in this article can help identify best practices in improving swarm resilience.

Keywords