Biochemistry and Biophysics Reports (Dec 2021)
Effect of galactosylceramide on stratum corneum intercellular lipid synthesis in a three-dimensional cultured human epidermis model
Abstract
Intercellular lipids in the stratum corneum (SC), such as ceramide (CER), free fatty acid (FFA), and cholesterol (CHOL), contribute to the formation of stable lamellar structures in the SC, making them important for skin barrier function. β-Galactosylceramide (GalCer) is a glycosphingolipid that is used in some cosmetics and quasi-drugs in anticipation of a moisturizing effect. GalCer promotes keratinocyte differentiation and increases CER production by increasing β-glucocerebrosidase (β-GCase) activity. However, few reports have described the mechanism of these effects, and detailed studies on the role of GalCer in intercellular lipid production in the SC have not been conducted. This study investigated the effect of GalCer on the metabolism and production of intercellular lipids in the SC in a three-dimensional cultured epidermis model. After reacting GalCer with a homogenate solution of three-dimensional cultured epidermis, GalCer was hardly metabolized. Treatment of the three-dimensional cultured epidermis with GalCer increased the expression of genes involved in the β-GCase metabolic pathway and promoted CER production. In addition, GalCer treatment reduced the expression of FFA metabolism-related genes as well as palmitic acid levels. In addition, transepidermal water loss, which is a barrier index, was reduced by GalCer treatment. These findings suggested that GalCer, which is hardly metabolized, affects the production of intercellular lipids in the SC and improves skin barrier function.