Foods (Sep 2024)
Tea’s Characteristic Components Eliminate Acrylamide in the Maillard Model System
Abstract
This study investigated the effects of various characteristic components of tea—theaflavins, catechins, thearubigins, theasinensins, theanine, catechin (C), catechin gallate (CG), epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), epigallocatechin gallate (EGCG), gallocatechin (GC), and gallocatechin gallate (GCG)—on acrylamide formation. The results revealed that most of tea’s characteristic components could significantly eliminate acrylamide, ranked from highest to lowest as follows: GC (55.73%) > EC (46.31%) > theaflavins (44.91%) > CG (40.73%) > thearubigins (37.36%) > ECG (37.03%) > EGCG (27.37%) > theabrownine (22.54%) > GCG (16.21%) > catechins (10.14%) > C (7.48%). Synergistic elimination effects were observed with thearubigins + EC + GC + CG, thearubigins + EC + CG, thearubigins + EC + GC, theaflavins + GC + CG, and thearubigins + theaflavins, with the reduction rates being 73.99%, 72.67%, 67.62%, 71.03%, and 65.74%, respectively. Tea’s components reduced the numbers of persistent free radicals to prevent acrylamide formation in the model system. The results provide a theoretical basis for the development of low-acrylamide foods and the application of tea resources in the food industry.
Keywords