BMC Genomics (May 2012)

Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (<it>Macaca fascicularis</it>) for biomedical research

  • Huh Jae-Won,
  • Kim Young-Hyun,
  • Park Sang-Je,
  • Kim Dae-Soo,
  • Lee Sang-Rae,
  • Kim Kyoung-Min,
  • Jeong Kang-Jin,
  • Kim Ji-Su,
  • Song Bong-Seok,
  • Sim Bo-Woong,
  • Kim Sun-Uk,
  • Kim Sang-Hyun,
  • Chang Kyu-Tae

DOI
https://doi.org/10.1186/1471-2164-13-163
Journal volume & issue
Vol. 13, no. 1
p. 163

Abstract

Read online

Abstract Background As a human replacement, the crab-eating macaque (Macaca fascicularis) is an invaluable non-human primate model for biomedical research, but the lack of genetic information on this primate has represented a significant obstacle for its broader use. Results Here, we sequenced the transcriptome of 16 tissues originated from two individuals of crab-eating macaque (male and female), and identified genes to resolve the main obstacles for understanding the biological response of the crab-eating macaque. From 4 million reads with 1.4 billion base sequences, 31,786 isotigs containing genes similar to those of humans, 12,672 novel isotigs, and 348,160 singletons were identified using the GS FLX sequencing method. Approximately 86% of human genes were represented among the genes sequenced in this study. Additionally, 175 tissue-specific transcripts were identified, 81 of which were experimentally validated. In total, 4,314 alternative splicing (AS) events were identified and analyzed. Intriguingly, 10.4% of AS events were associated with transposable element (TE) insertions. Finally, investigation of TE exonization events and evolutionary analysis were conducted, revealing interesting phenomena of human-specific amplified trends in TE exonization events. Conclusions This report represents the first large-scale transcriptome sequencing and genetic analyses of M. fascicularis and could contribute to its utility for biomedical research and basic biology.