Toxics (Sep 2024)

Environmental Impact of Waste Treatment and Synchronous Hydrogen Production: Based on Life Cycle Assessment Method

  • Yiting Luo,
  • Rongkui Su

DOI
https://doi.org/10.3390/toxics12090652
Journal volume & issue
Vol. 12, no. 9
p. 652

Abstract

Read online

Based on the life cycle assessment methodology, this study systematically analyzes the energy utilization of environmental waste through photocatalytic treatment and simultaneous hydrogen production. Using 10,000 tons of organic wastewater as the functional unit, the study evaluates the material consumption, energy utilization, and environmental impact potential of the photocatalytic waste synchronous hydrogen production system (specifically, the synchronous hydrogen production process of 4-NP wastewater with CDs/CdS/CNU). The findings indicate that potential environmental impacts from the photochemical treatment of environmental waste and synchronous hydrogen production primarily manifest in freshwater ecological toxicity, marine ecological toxicity, terrestrial ecological toxicity, and non-carcinogenic toxicity to humans. These ecological impacts stem from the catalyst’s adsorption and metal leaching during the photo-degradation and hydrogen production processes of environmental waste. By implementing reasonable modifications and morphological refinements to the catalyst, these effects can be mitigated while achieving enhanced efficiency in environmental waste processing and simultaneous hydrogen production. The research outcomes provide valuable insights for advancing sustainable development in green technology for environmental waste treatment and energy utilization.

Keywords