International Journal of Fruit Science (Dec 2022)

Antifungal Activity of β-Carboline Alkaloids Compound and Its Resistance Mechanism on Peronophythora Litchii

  • Shifan Li,
  • Ke Zhang,
  • Yayu Chen,
  • Zhibin Li,
  • Qiongbo Hu,
  • Qunfang Weng

DOI
https://doi.org/10.1080/15538362.2022.2097154
Journal volume & issue
Vol. 22, no. 1
pp. 646 – 663

Abstract

Read online

Peronophythora litchii (P. litchii) is the pathogenic factor of litchi downy blight. Derivatives extracted from harmine officinalis and modified, N-(2-pyridyl)-1-phenyl-9 H-pyrido [3, 4-b] indole-3-formamide (PPPIF), could inhibited P. litchii growth and development. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses indicated that PPPIF severely damaged the mitochondria, cell wall and endomembrane system of P. litchii cells, thus abnormal morphology, as well as deformed mycelia. PPPIF could suppress mycelial growth, sporulation, sporangia germination and germ tube elongation as well. PPPIF also caused a series of physiological and biochemical changes of P. litchii, including the serious deviation of extracellular pH, the obvious increase of the content of extracellular reducing sugar and malondialdehyde, the notable decrease of soluble protein and the activity of NADH oxidase. Furthermore, PPPIF seriously raised openness of membrane permeability transporter (MPTP) and markedly decreased the transmembrane potential (Δψm) and the activity of enzyme complex I–complex V in respiratory chain of mitochondria. The current research suggests that PPPIF may act upon the mitochondrion of P. litchii, then respiratory chain complex activity was blocked and energy metabolism disrupted or inhibited, resulting in the growth inhibition of P. litchii. Above results have strengthened our understanding of P. litchii resistance mechanisms and may help in the development of more potent inhibitors against plant diseases in the fields.

Keywords