Theory and Applications of Graphs (Jan 2016)

Path-factors involving paths of order seven and nine

  • Yoshimi Egawa,
  • Michitaka Furuya

DOI
https://doi.org/10.20429/tag.2016.030105
Journal volume & issue
Vol. 3, no. 1

Abstract

Read online

In this paper, we show the following two theorems (here $c_{i}(G-X)$ is the number of components $C$ of $G-X$ with $|V(C)|=i$): (i)~If a graph $G$ satisfies $c_{1}(G-X)+\frac{1}{3}c_{3}(G-X)+\frac{1}{3}c_{5}(G-X)\leq \frac{2}{3}|X|$ for all $X\subseteq V(G)$, then $G$ has a $\{P_{2},P_{7}\}$-factor. (ii)~If a graph $G$ satisfies $c_{1}(G-X)+c_{3}(G-X)+\frac{2}{3}c_{5}(G-X)+\frac{1}{3}c_{7}(G-X)\leq \frac{2}{3}|X|$ for all $X\subseteq V(G)$, then $G$ has a $\{P_{2},P_{9}\}$-factor.

Keywords