Materials (Feb 2022)

Wettability of Metal Surfaces Affected by Paint Layer Covering

  • Stanislaw Pogorzelski,
  • Katarzyna Boniewicz-Szmyt,
  • Maciej Grzegorczyk,
  • Pawel Rochowski

DOI
https://doi.org/10.3390/ma15051830
Journal volume & issue
Vol. 15, no. 5
p. 1830

Abstract

Read online

The aim of the work was to quantify the surface wettability of metallic (Fe, Al, Cu, brass) surfaces covered with sprayed paints. Wettability was determined using the contact angle hysteresis approach, where dynamic contact angles (advancing ΘA and receding ΘR) were identified with the inclined plate method. The equilibrium, ΘY, contact angle hysteresis, CAH = ΘA − ΘR, film pressure, Π, surface free energy, γSV, works of adhesion, WA, and spreading, WS, were considered. Hydrophobic water/solid interactions were exhibited for the treated surfaces with the dispersive term contribution to γSV equal to (0.66–0.69). The registered 3D surface roughness profiles allowed the surface roughness and surface heterogeneity effect on wettability to be discussed. The clean metallic surfaces turned out to be of a hydrophilic nature (ΘY SV, heterogeneous, and rough with a large CAH. The surface covering demonstrated the parameters’ evolution, ΘA↑, ΘR↑, γSV↓, WA↓, and WS↓, corresponding to the surface hydrophobization and exhibiting base substratum-specific signatures. The dimensionless roughness fluctuation coefficient, η, was linearly correlated to CAH. The CAH methodology based on the three measurable quantities, ΘA, ΘR, and liquid surface tension, γLV, can be a useful tool in surface-mediated process studies, such as lubrication, liquid coating, and thermoflow.

Keywords